The 1tpara.dtx code”

Frank Mittelbach
October 22, 2025

Abstract

This code defines four special kernel hooks to support paragraph tagging as well
as four public hooks which can be occasionally useful.

1 Introduction

The building of paragraphs in the TEX engine(s) has a number of peculiarities that
makes it on one hand fairly flexible but on the other hand somewhat awkward to control
or reliably to extend. Thus to better understand the code below we start with a brief
introduction of the mechanism; for more details refer to the TEXbook [?, chap. 14] (for
the full truth you may even have to study the program code).

1.1 The default processing done by the engine

TEX automatically starts building a paragraph when it is currently in vertical mode and
encounters anything that can only live in horizontal mode. Most often this is a character,
but there are also many commands that can be used only in horizontal mode. If any
of them is encountered, TEX will immediately back up (i.e., the character or command
is read later again), adds a \parskip glue to the current vertical list unless the list is
empty, switches to horizontal mode, starts its special “start of paragraph processing” and
only then rereads the character or command that caused the mode change.'

This “start of paragraph processing” first adds an empty box at the start of the
horizontal list of width \parindent (which represents the paragraph indentation) unless
the paragraph was started with \noindent in which case no such box is added?. It then
reads and processes all tokens stored in the special engine token register \everypar.
After that it reads and processes whatever has caused the paragraph to start.

Thus out of the box, TEX offers the possibility to put some special code into
\everypar to gain control at (more or less) the start of the paragraph. For example, in
LaTeX and a number of packages, special code like the following is sometimes used:

\everypar{{\setbox\z@\lastbox}\everypar{} ...}

*This file has version v1.0n dated 2025/02/07, © IATEX Project.

I Already not quite true: the command \noindent starts the paragraph but influences the special
processing by suppressing the paragraph indentation box normally inserted by it.

2That’s a bit different from placing a zero-sized box!

This removes the paragraph indentation box again (that was already placed by TEX),
then resets \everypar so that it doesn’t do anything on the next paragraph start and then
does whatever it wants to do, e.g., in an \item of a list it will typeset the label in front
of the paragraph text. However, there is only one such \everypar token register and if
different packages and/or the kernel all attempt to add their own code here, coordination
is very difficult if not impossible.

The process when the paragraph ends has different mechanisms and interfaces. A
paragraph ends when the engine primitive \par is called while TEX is in unrestricted hor-
izontal mode, i.e., is building a paragraph. At other times this primitive does nothing or
generates as an error depending on the mode TEX is in, e.g., the \par in \hbox{a\par b}
is ignored, but $a\par b$ would complain.

If this primitive ends the paragraph it does some special “end of horizontal list”
processing, then calls TEX’s paragraph builder; this breaks the horizontal list into lines
and then these lines are added as boxes to the enclosing vertical list and TEX returns to
vertical mode.

This \par command can be given explicitly, but there are also situations in which
TEX is generating it on the fly. Most often this happens when TEX encounters a blank
line which is automatically changed to a \par command which is then executed. The
other possibility is that TEX encounters a command which is incompatible with horizontal
processing, e.g., \vskip (a request for adding vertical space). In such cases it silently
backs up, and inserts a \par in the hope that this gets it out of horizontal mode and
makes the vertical command acceptable.

The important point to note here is that TEX really inserts the command with
the name \par, which can be redefined. Thus, it may not have its original “primitive”
meaning and therefore may not end the horizontal list and call the paragraph builder.
This approach offers some flexibility but also allows you to easily produce a TEX document
that loops forever, for example, the simple line

A \let\par\relax \vskip

will start a horizontal list at A, redefines \par, then sees \vskip and inserts \par to end
the paragraph. But this now only runs \relax so nothing changes and \vskip is read
again, issues a \par which In short, it only takes a plain TEX document with five
tokens to run forever (since no memory is consumed and therefore eventually exhausted).

There is no way other than changing \par to gain control at the end of a paragraph,
i.e., there is no token list like \everypar that is inserted. Hence the only way to change
the default behavior is to modify the action that \par executes, with similar issues
as outlined before: different processes need to ensure that they do not overwrite their
modifications or worse, think that the \par in front of them is the engine primitive while
in fact it has already been changed by other code.

To make matters slightly worse there are a few places where TEX handles the situa-
tion differently (most likely for speed reasons back when computers were much slower). If
TEX finds itself in unrestricted horizontal mode at the end of building a vertical box (for
an \insert, \vadjust or executing the output routine code), it will finish the horizontal
list not by issuing a \par command (which would be consistent with all other places) but
by simply executing the primitive meaning of \par, regardless of the actual definition
that \par has at the time.

Thus, if you have carefully crafted a redefined \par to execute some special actions
at the end of a paragraph and you write something like

\vbox{Some paragraph ... text.}

you will find that your code does not get run for the last paragraph in that box. IXTEX
avoids this problem, by making sure that its boxes (such as \parbox or the minipage
environment, etc.) all internally add an explicit \par at the end so that such code is run
and TEX finds itself in vertical mode already without the need to start up the paragraph
builder internally. But, of course, this only works for boxes under direct control of the
IMTEX kernel; if some package uses low-level \vboxes without adding this precaution the
TEX optimization kicks in and no special \par code is executed.

And there is another optimization that is painful: if a paragraph is interrupted
by a mathematical display, e.g., \[...\] in ITEX or $$...$$ in plain TEX, then TEX
will resume horizontal mode afterward, i.e., it will start to build a new horizontal list
without inserting an indentation box or \everypar at that point. However, if that list
immediately ends with an explicit or implicit \par then TEX will simply throw away this
“null” paragraph and not do its usual “end of horizontal list” processing, so this special
case also needs to be accounted for when introducing any extended processing.

2 The new mechanism implemented for EKTEX

To improve the situation (and also to support automatic tagging of PDF documents) we
now offer public as well as private hooks at the start and end of the paragraph processing.
The public hooks can be used by packages (or by the user in the preamble or within the
document) and using the hook mechanisms it is possible to reorder or arrange code from
different packages in such a way that these can safely coexist.

To make that happen we have to make use of the basic functionality that is offered
by TEX, e.g., we install special code inside \everypar to provide hooks at the beginning
and we redefine \par to do some special processing when appropriate to install hooks at
the end of the paragraph.

In order to make this work, we have to ensure that package use of \everypar is not
overwriting our code. This is done through a trick: we basically hide the real \everypar
from the packages and offer them a new token register (with the same name). So if they
install their own code it doesn’t overwrite ours. Our code then inserts the new \everypar
at the right place inside the process so that it looks as if it was the primitive \everypar.®

At the end of the paragraph it would be great if we could use a similar trick. However,
due to the fact that TEX inserts the token \par (that doesn’t have a defined meaning)
we can’t hide “the real thing™?” and offer the package an indistinguishable alternate.

Fortunately, I“TEX has already redefined \par for its own purposes. As a result
there aren’t many packages that attempt to change \par, because without a lot of extra
care that would fail miserably. But the bottom line is that, if you load a package that
alters \par then the end of paragraph hooks are most likely not executing while that
redefinition is active.*

31deally, \everypar wouldn’t be used at all by packages and instead they would simply write their
code into the hooks now offered by the kernel. However, while this is the longterm goal and clearly an
improvement (because then the packages do no longer need to worry about getting their code overwritten
or needing to account for already existing code in \everypar), this will not happen overnight. For that
reason support for this legacy method is retained.

4Similarly to the \everypar situation, the remedy is that such packages stop doing this and instead
add their alterations into the paragraph hooks now provided.

2.1 The provided hooks

para/before The following four public hooks are defined and executed for each paragraph:

para/begin
para/end

para/after

para/before This hook is executed after the kernel hook \@kernel@before@para@before
(discussed below) in vertical mode immediately after TEX has contributed \parskip
to the vertical list and before the actual paragraph processing in horizontal mode
starts.

This hook should either not produce any typeset material or add only vertical
material. If it starts a paragraph an error is generated. The reason is that we are
in the starting process of processing a paragraph and so this would lead to endless
recursion.’

para/begin This hook is executed after the kernel hook \@kernel@before@para@begin
(discussed below) in horizontal mode immediately before the indentation box is
placed (if there is any, i.e., if the paragraph hasn’t been started with \noindent).

The indentation box to be typeset is available to the hook as \IndentBox and
its automatic placement (after the hook is executed) can be prevented through
\OmitIndent. More precisely \OmitIndent voids the box.

The indentation box is then typeset directly after the hook execution by something
equivalent to \box\IndentBox followed by the current content of the token register
\everypar that it is available to the kernel or to packages (that run some legacy
code).

One has to be careful not to add any code to the hook that starts its own paragraph
(e.g., by adding a \parbox or a \marginpar inside) because that would call the
hook inside again (as a new paragraph is started there) and thus lead to an endless
recursion ending only after exhausting the available memory. This can only be
done by making sure that is not executed for the inner paragraphs (or at least not
recursively forever).

para/end This hook is executed at the end of a paragraph when TEX is ready to return to
vertical mode and after it has removed the last horizontal glue (but not any kerns)
placed on the horizontal list. The code is still executed in horizontal mode so it
is possible to add further horizontal material at this point, but it should not alter
the mode (even a temporary exit from horizontal mode would create chaos—any
attempt will cause an error message)! After the hook has ended the kernel hook
\@kernel@after@para@end is executed and then TEX returns to vertical mode.

The hook is offered as public hook, but because of the requirement to stay within
horizontal mode one needs to be careful in what is placed into the hook.°

This hook is implemented as a reversed hook.
para/after This hook is executed directly after TEX has returned to vertical mode and

after any material that migrated out of the horizontal list (e.g., from a \vadjust)
has processed.

50ne could allow it but only if the newly started paragraph is processed without any hooks. Further-
more correct spacing would be a bit of a nightmare so for now this is forbidden.

6Maybe we should guard against that, but it would be rather tricky to implement as mode changes
can happen across group boundaries so one would need to keep a private stack just for that. Well,
something to ponder.

This hook should either not produce any typeset material or add only vertical
material. However, for this hook starting a new paragraph is not a disaster so that
it isn’t prevented.

This hook is implemented as a reversed hook.

Once that hook code has been processed the kernel hook \@kernel®@after@para@after
is executed as the final action of the paragraph processing.

\@kernel@before@para@before
\@kernel@after@para®after
\@kernel@before@para@begin
\@kernel®@after@para@end

As already mentioned above there are also four kernel hooks that are executed at the
start and end of the processing.

\@kernel@before@para@before For future extensions, not currently used by the kernel.
\@kernel@after@para@after For future extensions, not currently used by the kernel.

\@kernel@before@paralbegin Used by the kernel to implement tagging. This hook is
executed at the very beginning of a paragraph after TEX has switched to horizontal
mode but before any indentation box got added or any \everypar was run.

It should not generate typeset material that could alter the position. Note that
it should never leave hmode, otherwise you will end with a loop! We could guard
against this, but since it is an internal kernel hook that shouldn’t be touched this
isn’t checked.

\@kernel@after@para@end Used by the kernel to implement tagging. It is executed
directly after the public para/end hook. After it there is a quick check that we
are still in horizontal mode, i.e., that the public hook has not mistakenly ended
horizontal mode prematurely (this is an incomplete check just testing the mode
and could perhaps be improved (at the cost of speed)).

2.2 Altered and newly provided commands

\par An explicit request for ending a paragraph is provided in plain TEX under the name

\endgraf \endgraf, which simply uses the primitive meaning (regardless of what \par may have

\para_end: . jts current definition). In KTEX \endgraf (with that behavior) was originally also
available.

With the new paragraph handling in BTEX, ending a paragraph means a bit more
than just calling the engine’s paragraph builder: the process also has to add any hook
code for the end of a paragraph. Thus \endgraf was changed to provide this additional
functionality (along with \par remaining subject to its current meaning).

The expl3 name for this functionality is \para_end:.

Note: The next two commands are still under discussion and may slightly
change their semantics (as described in the document) and/or their names
between now and the 2021 Spring release!

\OmitIndent
\para_omit_indent:

\IndentBox
\g_para_indent_box

\RawIndent
\para_raw_indent:
\RawNoindent
\para_raw_noindent:
\RawParEnd
\para_raw_end:

Inside the para/begin hook one can use this command to suppress the indentation box
at the start of the paragraph. (Technically it is possible to use this command outside the
hook as well, but this should not be relied upon.) The box itself remains available for
use.

The expl3 name for the function is \para_omit_indent:.

The box register holding the indentation box for the paragraph is available for inspection
(or changes) inside hooks. It remains available even if the \OmitIndent command was
used; in that case it will just not be automatically placed.

The expl3 name for the box register is \g_para_indent_box.

\RawIndent hmode material \RawParEnd
\RawNoindent hmode material \RawParEnd

The commands \RawIndent and \RawNoindent are not meant for normal paragraph
building (where the result is a textual paragraph in the traditional meaning of the word),
but for special cases where TEX’s low-level algorithm is used to achieve special effects,
but where the result is not a “paragraph”.

They are called “raw”, because they bypass ITEX’s hook mechanism for paragraphs
and simply invoke the low-level TEX algorithm. L.e., they are like the original TEX prim-
itives \indent and \noindent (that is they execute no hooks other than \everypar)
except that they can only be used in vertical mode and generate an error if found else-
where.

To avoid issues a paragraph started by them should always be ended by \RawParEnd”
and not by \par (or a blank line), because the latter will execute hooks which then have no
counterpart at the beginning of the paragraph. It is the responsibility of the programmer
to make sure that they are properly paired. This also means that one should not put
arbitrary user content between these commands if that content could contain stray \pars.

The expl3 names for the functions are \para_raw_indent:, \para_raw_indent: and
\para_raw_end:.

2.3 Examples

None of the examples in this section are meant for real use as they are far too simple-
minded but they should give some ideas of what could be possible if a bit more care is
applied.

2.3.1 Testing the mechanism

The idea is to output for each paragraph encountered some information: a paragraph
sequence number, a level number in roman numerals, the environment in which this
paragraph appears, and the line number where the start or end of the paragraph is, e.g.,
something like

PARA: 1-i start (document env. on input line 38)
PARA: 1-i end (document env. on input line 38)

"Technical note for those who know their TpXbook: the \RawParEnd command invokes the original
TEX engine definition of \par that (solely) triggers the paragraph builder in TEX when found inside
unrestricted horizontal mode and does nothing in other processing modes.

PARA: 2-i start (document env. on input line 40)
PARA: 3-ii start (minipage env. on input line 40)
PARA: 3-ii end (minipage env. on input line 40)
PARA: 2-i end (document env. on input line 41)

As you can see paragraph 2 starts on line 40 and ends on 41 and inside a minipage started
paragraph 3 (start and end on line 40). If you run this on some document you will find
that ITEX considers more things “a paragraph” than you have probably thought.

This was generated by the following hook code:

\newcounter{paracnt} % sequence counter
\newcounter{paralevell} % level counter

To support paragraph nesting we need to maintain a stack of the sequence numbers.
This is most easily done using expl3 functions, so we switch over. This is not a very
general implementation, just enough for what we need and a bit of TEX 2¢ thrown in
as well. When popping, the result gets stored in \paracntvalue and the \ERROR should
never happen because it means we have tried to pop from an empty stack.

\ExplSyntaxOn
\seq_new:N \g_para_seq
\cs_new:Npn \ParaPush
{\seq_gpush:No \g_para_seq {\the\value{paracntl}}}
\cs_new:Npn \ParaPop {\seq_gpop:NNF \g_para_seq \paracntvalue \ERROR }
\ExplSyntax0ff

At the start of the paragraph increment both sequence counter and level and also save
the then current sequence number on our stack.

\makeatletter 7 because we use a few internal 2e commands

\AddToHook{para/begin}{%
\stepcounter{paracnt}\stepcounter{paralevell}y,
\ParaPush

To display the sequence number we \typeout the current sequence and level number.
The command \@currenvir gives us the current environment and \on@line produces a
space and the current input line number.

\typeout{PARA: \arabic{paracnt}-\roman{paralevel} start
(\@currenvir\space env.\on@line)}%

We also typeset the sequence number as a tiny red number in a box that takes up
no horizontal space. This helps us seeing where IZTEX sees the start and end of the
paragraphs in the document.

\1lap{\color{red}\tiny\arabic{paracnt}\ 1}/
}

At the end of the paragraph we display sequence number and level again. The level
counter has the correct value but we need to retrieve the right sequence value by popping
it off the stack after which it is available in \paracntvalue the way we have set this up
above.

\AddToHook{para/end}{%
\ParaPop
\typeout{PARA: \paracntvalue-\roman{paralevell} end \space\space
(\@currenvir\space env.\on@line)}%

We also typeset again a tiny red number with that value, this time sticking out to the
right.® We also decrement the level counter since our level has finished.

\rlap{\color{red}\tiny\ \paracntvaluel},
\addtocounter{paralevel}{-1}%
}

\makeatother

2.3.2 Mark the first paragraph of each itemize

The code for this is rather simple. We supply some code that is executed only once inside
a hook at the start of each itemize. We explicitly change the color back and forth so
that we don’t introduce grouping around the paragraph.

\AddToHook{env/itemize/begin}{%
\AddToHookNext{para/begin}{\color{blue}}%
\AddToHookNext{para/end}{\color{black}}/,

}

As a result the first paragraph of each itemize will appear in blue.

2.4 Some technical notes

The code tries hard to be transparent for package code, but of course any change means

that there is a potential for breaking other code. So in section we collect a few cases that

may be of importance if low-level code is dealing with paragraphs that are now behaving

slightly differently. The notes are from issues we observed and will probably grow over

time.

2.4.1 Glue items between paragraphs (found with fancypar)

In the past BTEX placed two glue items between two consecutive paragraphs, e.g.,
textl \par text2 \par

would show something like

\glue (\parskip) 0.0 plus 1.0
\glue(\baselineskip) 5.16669

but now there is another \parskip glue (that is always Opt):

\glue (\parskip) 0.0 plus 1.0
\glue (\parskip) 0.0
\glue (\baselineskip) 5.16669

8Note that this can alter the document pagination, because a paragraph ending in a display (e.g., an
equation) will get an extra line—in that case our tiny number has an effect even though it doesn’t take
up any space, because it paragraph is no longer empty and thus isn’t dropped!

The reason is that we generate a “fake” paragraph to gain control and safely add the
early hooks, but this generates an additional glue item. That item doesn’t contribute
anything vertically but if somebody writes code that unravels a constructed list using
\lastbox, \unskip and \unpenalty then the code has to remove one additional glue

item or else it will fail.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

B
\DOX .« ot e 4
E
\endgraf 5
NERRORttt 7
\everypar0.. .. 2
I
\indent 6
\IndentBox 6
\insert 2
\item 2
L
\lastbox 9
M
\marginpar, 4
N
\noindent 6
(@)
\OmitIndent 6
P
\PaT .« 3
para commands:
\para_end: 5
\g_para_indent_box 6
\para_omit_indent: 6
\para_raw_end: 6
\para_raw_indent: 6

\para_raw_noindent:
para/after
para/before
para/begin
para/end
\paracntvalue
\parbox
\parindent
\parskip

\RawIndent
\RawNoindent
\RawParEnd
\relax

TEX and ETEX 2 commands:
\@currenvir
\@kernel@after@para@after
\@kernel@after@paraend
\@kernel@before@para@before
\@kernel@before@para@begin
\on@line

\typeout

\unpenalty
\unskip

\vbox

	1 Introduction
	1.1 The default processing done by the engine

	2 The new mechanism implemented for LaTeX
	2.1 The provided hooks
	2.2 Altered and newly provided commands
	2.3 Examples
	2.3.1 Testing the mechanism
	2.3.2 Mark the first paragraph of each itemize

	2.4 Some technical notes
	2.4.1 Glue items between paragraphs (found with fancypar)

	Index
	B
	E
	I
	L
	M
	N
	O
	P
	R
	T
	U
	V

