
LATEX’s hook management∗

Frank Mittelbach†

October 22, 2025

Contents
1 Introduction 2

2 Package writer interface 2
2.1 LATEX 2ε interfaces . 2

2.1.1 Declaring hooks . 2
2.1.2 Special declarations for generic hooks 3
2.1.3 Using hooks in code . 4
2.1.4 Updating code for hooks . 5
2.1.5 Hook names and default labels . 8
2.1.6 The top-level label . 10
2.1.7 Defining relations between hook code 10
2.1.8 Querying hooks . 12
2.1.9 Displaying hook code . 13
2.1.10 Debugging hook code . 14

2.2 L3 programming layer (expl3) interfaces 14
2.3 On the order of hook code execution . 17
2.4 The use of “reversed” hooks . 19
2.5 Difference between “normal” and “one-time” hooks 20
2.6 Generic hooks provided by packages . 20
2.7 Hooks with arguments . 21
2.8 Private LATEX kernel hooks . 23
2.9 Legacy LATEX 2ε interfaces . 23

3 LATEX 2ε commands and environments augmented by hooks 24
3.1 Generic hooks . 24

3.1.1 Generic hooks for all environments 25
3.1.2 Generic hooks for commands . 26
3.1.3 Generic hooks provided by file loading operations 26

3.2 Hooks provided by \begin{document} 27
3.3 Hooks provided by \end{document} . 27
3.4 Hooks provided by \shipout operations 29
3.5 Hooks provided for paragraphs . 29
3.6 Hooks provided in NFSS commands . 29
3.7 Hook provided by the mark mechanism 30

∗This module has version v1.1n dated 2025/10/01, © LATEX Project.
†Code improvements for speed and other goodies by Phelype Oleinik

1

Index 30

1 Introduction
Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other, and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

2 Package writer interface
The hook management system is offered as a set of CamelCase commands for traditional
LATEX 2ε packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of LATEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

2.1 LATEX 2ε interfaces
2.1.1 Declaring hooks

With a few exceptions, hooks have to be declared before they can be used. The exceptions
are the generic hooks for commands and environments (executed at \begin and \end),
and the generic hooks run when loading files (see section 3.1).

\NewHook {⟨hook⟩}

Creates a new ⟨hook⟩. If this hook is declared within a package it is suggested that its
name is always structured as follows: ⟨package-name⟩/⟨hook-name⟩. If necessary you
can further subdivide the name by adding more / parts. If a hook name is already taken,
an error is raised and the hook is not created.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5. The string ?? can’t be used as a hook name because it has a
special significance as a placeholder in hook rules.

\NewHook

\NewReversedHook {⟨hook⟩}

Like \NewHook declares a new ⟨hook⟩. the difference is that the code chunks for this hook
are in reverse order by default (those added last are executed first). Any rules for the
hook are applied after the default ordering. See sections 2.3 and 2.4 for further details.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\NewReversedHook

2

\NewMirroredHookPair {⟨hook-1⟩} {⟨hook-2⟩}

A shorthand for \NewHook{⟨hook-1 ⟩}\NewReversedHook{⟨hook-2 ⟩}.
The ⟨hook⟩ can be specified using the dot-syntax to denote the current package

name. See section 2.1.5.

\NewMirroredHookPair

\NewHookWithArguments {⟨hook⟩} {⟨number⟩}

Creates a new ⟨hook⟩ whose code takes ⟨number⟩ arguments, and otherwise works exactly
like \NewHook. Section 2.7 explains hooks with arguments.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\NewHookWithArguments

\NewReversedHookWithArguments {⟨hook⟩} {⟨number⟩}\NewReversedHookWithArguments

Like \NewReversedHook, but creates a hook whose code takes ⟨number⟩ arguments. Sec-
tion 2.7 explains hooks with arguments.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\NewMirroredHookPairWithArguments {⟨hook-1⟩} {⟨hook-2⟩} {⟨number⟩}\NewMirroredHookPairWithArguments

A shorthand for \NewHookWithArguments{⟨hook-1 ⟩}{⟨number⟩}
\NewReversedHookWithArguments{⟨hook-2 ⟩}{⟨number⟩}. Section 2.7 explains hooks
with arguments.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

2.1.2 Special declarations for generic hooks

The declarations here should normally not be used. They are available to provide support
for special use cases mainly involving generic command hooks.

\DisableGenericHook {⟨hook⟩}

After this declaration1 the ⟨hook⟩ is no longer usable: Any further attempt to add code
to it will result in an error and any use, e.g., via \UseHook, will simply do nothing.

This is intended to be used with generic command hooks (see ltcmdhooks-doc) as
depending on the definition of the command such generic hooks may be unusable. If that
is known, a package developer can disable such hooks up front.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\DisableGenericHook

\ActivateGenericHook {⟨hook⟩}

This declaration activates a generic hook provided by a package/class (e.g., one used
in code with \UseHook or \UseOneTimeHook) without it being explicitly declared with
\NewHook). If the hook is already activated, this command does nothing.

Note that this command does not undo the effect of \DisableGenericHook. See
section 2.6 for a discussion of when this declaration is appropriate.

\ActivateGenericHook

1In the 2020/06 release this command was called \DisableHook, but that name was misleading as it
shouldn’t be used to disable non-generic hooks.

3

2.1.3 Using hooks in code

Using a hook that is executing the code that has been associated with it is only allowed
if the hook has been previously declared with \NewHook. For performance reason there
are no runtime checks for this and it is the responsibility of the programmer of a package
to ensure that all hooks that are used in a package (with one of the commands in this
section) are declared first.

\UseHook {⟨hook⟩}

Execute the code stored in the ⟨hook⟩.
Before \begin{document} the fast execution code for a hook is not set up, so in

order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\UseHook

\UseHookWithArguments {⟨hook⟩} {⟨number⟩} {⟨arg1⟩} ... {⟨argn⟩}

Execute the code stored in the ⟨hook⟩ and pass the arguments {⟨arg1⟩} through {⟨argn⟩}
to the ⟨hook⟩. Otherwise, it works exactly like \UseHook. The ⟨number⟩ should be the
number of arguments declared for the hook. If the hook is not declared, this command
does nothing and it will remove ⟨number⟩ items from the input. Section 2.7 explains
hooks with arguments.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\UseHookWithArguments

\UseOneTimeHook {⟨hook⟩}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. From that point onwards, adding to the hook
through a defined \⟨addto-cmd⟩ command (e.g., \AddToHook or \AtBeginDocument, etc.)
would have no effect (as would the use of such a command inside the hook code itself).
It is therefore customary to redefine \⟨addto-cmd⟩ to simply process its argument, i.e.,
essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

Using \UseOneTimeHook several times with the same {⟨hook⟩} means that it only
executes the first time it is used. For example, if it is used in a command that can
be called several times then the hook executes during only the first invocation of that
command; this allows its use as an “initialization hook”.

Mixing \UseHook and \UseOneTimeHook for the same {⟨hook⟩} should be avoided,
but if this is done then neither will execute after the first \UseOneTimeHook.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.
See section 2.1.5 for details.

\UseOneTimeHook

4

\UseOneTimeHookWithArguments {⟨hook⟩} {⟨number⟩} {⟨arg1⟩} ... {⟨argn⟩}\UseOneTimeHookWithArguments

Works exactly like \UseOneTimeHook, but passes arguments {⟨arg1⟩} through {⟨argn⟩}
to the ⟨hook⟩. The ⟨number⟩ should be the number of arguments declared for the hook.
If the hook is not declared, this command does nothing and it will remove ⟨number⟩ items
from the input.

It should be noted that after a one-time hook is used, it is no longer possible to use
\AddToHookWithArguments or similar with that hook. \AddToHook continues to work as
normal. Section 2.7 explains hooks with arguments.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.
See section 2.1.5 for details.

2.1.4 Updating code for hooks

In contrast to the commands from the previous section, declarations such as \AddToHook
or \DeclareHookRule can be used even when the hook is not yet declared. The rationale
is that the hook declaration may be in some package that is loaded later, or perhaps not
loaded at all.

A side effect of this design is that misspellings do not raise an error but are simply
regarded as declarations for hooks with a different name.

\AddToHook {⟨hook⟩} [⟨label⟩] {⟨code⟩}

Adds ⟨code⟩ to the ⟨hook⟩ labeled by ⟨label⟩. When the optional argument ⟨label⟩ is
not provided, the ⟨default label⟩ is used (see section 2.1.5). If \AddToHook is used in a
package/class, the ⟨default label⟩ is the package/class name, otherwise it is top-level
(the top-level label is treated differently: see section 2.1.6).

If there already exists code under the ⟨label⟩ then the new ⟨code⟩ is appended to
the existing one (even if this is a reversed hook). If you want to replace existing code
under the ⟨label⟩, first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared, then obviously the added ⟨code⟩ will never be executed. This allows for hooks
to work regardless of package loading order and enables packages to add to hooks from
other packages without worrying whether they are actually used in the current document.
See section 2.1.8.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\AddToHook

5

\AddToHookWithArguments {⟨hook⟩} [⟨label⟩] {⟨code⟩}

Works exactly like \AddToHook, except that the ⟨code⟩ can access the arguments passed
to the hook using #1, #2, . . . , #n (up to the number of arguments declared for the
hook). If the ⟨code⟩ should contain parameter tokens (#) that are not supposed to be
understood as the arguments of the hook, such tokens should be doubled. For example,
with \AddToHook one can write:

\AddToHook{myhook}{\def\foo#1{Hello, #1!}}

but to achieve the same with \AddToHookWithArguments, one should write:

\AddToHookWithArguments{myhook}{\def\foo##1{Hello, ##1!}}

because in the latter case, #1 refers to the first argument of the hook myhook. Section 2.7
explains hooks with arguments.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\AddToHookWithArguments

\RemoveFromHook {⟨hook⟩} [⟨label⟩]

Removes any code labeled by ⟨label⟩ from the ⟨hook⟩. When the optional argument
⟨label⟩ is not provided, the ⟨default label⟩ is used (see section 2.1.5).

\RemoveFromHook

If there is no code under the ⟨label⟩ in the ⟨hook⟩, or if the ⟨hook⟩ does not exist, a
warning is issued when you attempt to \RemoveFromHook, and the command is ignored.
\RemoveFromHook should be used only when you know exactly what labels are in a hook.Important:

The \RemoveFromHook
command should be only

used if one has full control
over the code chunk to be
removed. In particular it

should not be used to
remove code chunks from

other packages! For this the
voids relation is provided.

Typically this will be when some code gets added to a hook by a package, then later this
code is removed by that same package. If you want to prevent the execution of code from
another package, use the voids rule instead (see section 2.1.7).

If the optional ⟨label⟩ argument is *, then all code chunks are removed. This is
rather dangerous as it may well drop code from other packages (that one may not know
about); it should therefore not be used in packages but only in document preambles!

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

In contrast to the voids relationship between two labels in a \DeclareHookRule this
is a destructive operation as the labeled code is removed from the hook data structure,
whereas the relationship setting can be undone by providing a different relationship later.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/begin}{\small}
\begin{quote}

A quote set in a smaller typeface
\end{quote}
...
\RemoveFromHook{env/quote/begin}
... now back to normal for further quotes

Note that you can’t cancel the setting with

\AddToHook{env/quote/begin}{}

6

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means two font size changes for no good reason.

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

\AddToHookNext {⟨hook⟩} {⟨code⟩}

Adds ⟨code⟩ to the next invocation of the ⟨hook⟩. The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.

Using this declaration is a global operation, i.e., the code is not lost even if the
declaration is used inside a group and the next invocation of the hook happens after the
end of that group. If the declaration is used several times before the hook is executed
then all code is executed in the order in which it was declared.2

If this declaration is used with a one-time hook then the code is only ever used
if the declaration comes before the hook’s invocation. This is because, in contrast to
\AddToHook, the code in this declaration is not executed immediately in the case when
the invocation of the hook has already happened—in other words, this code will truly
execute only on the next invocation of the hook (and in the case of a one-time hook there
is no such “next invocation”). This gives you a choice: should my code execute always,
or should it execute only at the point where the one-time hook is used (and not at all if
this is impossible)? For both of these possibilities there are use cases.

It is possible to nest this declaration using the same hook (or different hooks): e.g.,

\AddToHookNext{⟨hook⟩}{⟨code-1⟩\AddToHookNext{⟨hook⟩}{⟨code-2 ⟩}}

will execute ⟨code-1⟩ next time the ⟨hook⟩ is used and at that point puts ⟨code-2⟩ into
the ⟨hook⟩ so that it gets executed on following time the hook is run.

A hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 2.1.8.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\AddToHookNext

\AddToHookNextWithArguments {⟨hook⟩} {⟨code⟩}\AddToHookNextWithArguments

Works exactly like \AddToHookNext, but the ⟨code⟩ can contain references to the ar-
guments of the ⟨hook⟩ as described for \AddToHookWithArguments above. Section 2.7
explains hooks with arguments.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\ClearHookNext {⟨hook⟩}

Normally \AddToHookNext is only used when you know precisely where it will apply and
why you want some extra code at that point. However, there are a few use cases in
which such a declaration needs to be canceled, for example, when discarding a page with
\DiscardShipoutBox (but even then not always), and in such situations \ClearHookNext
can be used.

\ClearHookNext

2There is no mechanism to reorder such code chunks (or delete them).

7

2.1.5 Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a ⟨label⟩
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the ⟨label⟩.

Using an explicit ⟨label⟩ is only necessary in very specific situations, e.g., if you
want to add several chunks of code into a single hook and have them placed in different
parts of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same ⟨label⟩ throughout the sub-packages in order
to avoid that the labels change if you internally reorganize your code.

Except for \UseHook, \UseOneTimeHook and \IfHookEmptyTF (and their expl3 in-
terfaces \hook_use:n, \hook_use_once:n and \hook_if_empty:nTF), all ⟨hook⟩ and
⟨label⟩ arguments are processed in the same way: first, spaces are trimmed around the
argument, then it is fully expanded until only character tokens remain. If the full expan-
sion of the ⟨hook⟩ or ⟨label⟩ contains a non-expandable non-character token, a low-level
TEX error is raised (namely, the ⟨hook⟩ is expanded using TEX’s \csname. . . \endcsname,
as such, Unicode characters are allowed in ⟨hook⟩ and ⟨label⟩ arguments). The argu-
ments of \UseHook, \UseOneTimeHook, and \IfHookEmptyTF are processed much in the
same way except that spaces are not trimmed around the argument, for better perfor-
mance.

It is not enforced, but highly recommended that the hooks defined by a package,
and the ⟨labels⟩ used to add code to other hooks contain the package name to eas-
ily identify the source of the code chunk and to prevent clashes. This should be the
standard practice, so this hook management code provides a shortcut to refer to the
current package in the name of a ⟨hook⟩ and in a ⟨label⟩. If the ⟨hook⟩ name or the
⟨label⟩ consist just of a single dot (.), or starts with a dot followed by a slash (./)
then the dot denotes the ⟨default label⟩ (usually the current package or class name—
see \SetDefaultHookLabel). A “.” or “./” anywhere else in a ⟨hook⟩ or in ⟨label⟩ is
treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

\NewHook {./hook}
\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}
\AddToHook {./hook}[./sub]{code}
\DeclareHookRule{begindocument}{.}{before}{babel}
\AddToHook {file/foo.tex/after}{code}

are equivalent to:

\NewHook {mypackage/hook}
\AddToHook {mypackage/hook}[mypackage]{code}
\AddToHook {mypackage/hook}[mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{before}{babel}
\AddToHook {file/foo.tex/after}{code} % unchanged

The ⟨default label⟩ is automatically set equal to the name of the current pack-
age or class at the time the package is loaded. If the hook command is used outside
of a package, or the current file wasn’t loaded with \usepackage or \documentclass,
then the top-level is used as the ⟨default label⟩. This may have exceptions—see
\PushDefaultHookLabel.

8

This syntax is available in all ⟨label⟩ arguments and most ⟨hook⟩ arguments, both
in the LATEX 2ε interface, and the LATEX3 interface described in section 2.2.

Note, however, that the replacement of . by the ⟨default label⟩ takes place whenImportant:
The dot-syntax is not

available with \UseHook
and some other commands

that are typically used
within code!

the hook command is executed, so actions that are somehow executed after the package
ends will have the wrong ⟨default label⟩ if the dot-syntax is used. For that reason,
this syntax is not available in \UseHook (and \hook_use:n) because the hook is most of
the time used outside of the package file in which it was defined. This syntax is also not
available in the hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF), because
these conditionals are used in some performance-critical parts of the hook management
code, and because they are usually used to refer to other package’s hooks, so the dot-
syntax doesn’t make much sense.

In some cases, for example in large packages, one may want to separate the code
in logical parts, but still use the main package name as the ⟨label⟩, then the ⟨default
label⟩ can be set using \PushDefaultHookLabel{...} . . . \PopDefaultHookLabel or
\SetDefaultHookLabel{...}.

\PushDefaultHookLabel {⟨default label⟩}
⟨code⟩

\PopDefaultHookLabel

\PushDefaultHookLabel sets the current ⟨default label⟩ to be used in ⟨label⟩ argu-
ments, or when replacing a leading “.” (see above). \PopDefaultHookLabel reverts the
⟨default label⟩ to its previous value.

Inside a package or class, the ⟨default label⟩ is equal to the package or class
name, unless explicitly changed. Everywhere else, the ⟨default label⟩ is top-level
(see section 2.1.6) unless explicitly changed.

The effect of \PushDefaultHookLabel holds until the next \PopDefaultHookLabel.
\usepackage (and \RequirePackage and \documentclass) internally use

\PushDefaultHookLabel{⟨package name⟩}
⟨package code⟩

\PopDefaultHookLabel

to set the ⟨default label⟩ for the package or class file. Inside the ⟨package code⟩ the
⟨default label⟩ can also be changed with \SetDefaultHookLabel. \input and other
file input-related commands from the LATEX kernel do not use \PushDefaultHookLabel,
so code within files loaded by these commands does not get a dedicated ⟨label⟩! (that
is, the ⟨default label⟩ is the current active one when the file was loaded.)

Packages that provide their own package-like interfaces (TikZ’s \usetikzlibrary,
for example) can use \PushDefaultHookLabel and \PopDefaultHookLabel to set dedi-
cated labels and to emulate \usepackage-like hook behavior within those contexts.

The top-level label is treated differently, and is reserved to the user document, so
it is not allowed to change the ⟨default label⟩ to top-level.

\PushDefaultHookLabel
\PopDefaultHookLabel

9

\SetDefaultHookLabel {⟨default label⟩}

Similarly to \PushDefaultHookLabel, sets the current ⟨default label⟩ to be used in
⟨label⟩ arguments, or when replacing a leading “.”. The effect holds until the label
is changed again or until the next \PopDefaultHookLabel. The difference between
\PushDefaultHookLabel and \SetDefaultHookLabel is that the latter does not save
the current ⟨default label⟩.

This command is useful when a large package is composed of several smaller pack-
ages, but all should have the same ⟨label⟩, so \SetDefaultHookLabel can be used at
the beginning of each package file to set the correct label.

\SetDefaultHookLabel is not allowed in the main document, where the ⟨default
label⟩ is top-level and there is no \PopDefaultHookLabel to end its effect. It is also
not allowed to change the ⟨default label⟩ to top-level.

\SetDefaultHookLabel

2.1.6 The top-level label

The top-level label, assigned to code added from the main document, is different from
other labels. Code added to hooks (usually \AtBeginDocument) in the preamble is almost
always to change something defined by a package, so it should go at the very end of the
hook.

Therefore, code added in the top-level is always executed at the end of the hook,
regardless of where it was declared. If the hook is reversed (see \NewReversedHook), the
top-level chunk is executed at the very beginning instead.

Rules regarding top-level have no effect: if a user wants to have a specific set of
rules for a code chunk, they should use a different label to said code chunk, and provide
a rule for that label instead.

The top-level label is exclusive for the user, so trying to add code with that label
from a package results in an error.

2.1.7 Defining relations between hook code

The default assumption is that code added to hooks by different packages are independent
and the order in which they are executed is irrelevant. While this is true in many cases
it is obviously false in others.

Before the hook management system was introduced packages had to take elaborate
precautions to determine whether some other package had also been loaded (before or
after) and then to find some ways to alter its behavior accordingly. In addition is was
often the user’s responsibility to load packages in the right order so that alterations made
by packages were done in thsat same order; and in some cases even altering the loading
order wouldn’t resolve the conflicts.

With the new hook management system it is now possible to define rules (i.e., rela-
tionships) between code chunks added by different packages and to specify explicitly the
order in which they should be processed.

The rules can be declared for hooks before the hook has been declared with \NewHook
and they are allowed to refer to code labels that do not yet exist, e.g., because a package
defining the code chunk with that label has not yet been loaded. When the hook code
is finally sorted for fast execution, all rules that apply are acted on and the others are
ignored.

This offers the flexibility needed to handle complicated relationships between code
from different packages and to set this up beforehand in a way that is independent of
whether or not the packages are actually loaded in a specific document. The downside

10

of this is that misspellings of hook names or code labels will not raise any error, instead
the rule will simply never apply!

\DeclareHookRule {⟨hook⟩} {⟨label1⟩} {⟨relation⟩} {⟨label2⟩}

Defines a relation between ⟨label1⟩ and ⟨label2⟩ for a given ⟨hook⟩. If ⟨hook⟩ is ??
this defines a default relation for all hooks that use the two labels, i.e., that have chunks
of code labeled with ⟨label1⟩ and ⟨label2⟩.

Currently, the supported relations are the following:

before or < Code for ⟨label1⟩ comes before code for ⟨label2⟩.

after or > Code for ⟨label1⟩ comes after code for ⟨label2⟩.

incompatible-warning Only code for either ⟨label1⟩ or ⟨label2⟩ can appear for that hook (a way to say
that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a LATEX error is raised, and
the code for both labels are dropped from that hook until the conflict is resolved.

voids Code for ⟨label1⟩ overwrites code for ⟨label2⟩. More precisely, code for ⟨label2⟩
is dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for ⟨label1⟩ and ⟨label2⟩ is irrelevant. This rule is there to
undo an incorrect rule specified earlier.

There can only be a single relation between two labels for a given hook, i.e., a later
\DeclareHookRule overwrites any previous declaration. In all cases rules specific to a
given hook take precedence over default rules that use ?? as the ⟨hook⟩.

If a default rule is applied, it is done before reversing the label order in a reversed
hook, e.g., before in a default rule effectively becomes after in such a hook. In contrast,
a rule for a specific hook is always applied to the state after any reversal (i.e., the state
you see when using \ShowHook on that hook).

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\DeclareHookRule

\ClearHookRule {⟨hook⟩} {⟨label1⟩} {⟨label2⟩}

Syntactic sugar for saying that ⟨label1⟩ and ⟨label2⟩ are unrelated for the given ⟨hook⟩.
\ClearHookRule

11

\DeclareDefaultHookRule {⟨label1⟩} {⟨relation⟩} {⟨label2⟩}

This sets up a relation between ⟨label1⟩ and ⟨label2⟩ for all hooks unless overwritten
by a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with ?? as the
hook name.)

If such a rule is applied to a reversed hook it behaves as if the rule is reversed
(e.g., after becomes before) because those rules are applied first and then the order is
reversed. The rationale is that in hook pairs (in which the ordering in one is reversed)
default rules have to be reversed too in nearly all scenarios. If this is not the case, a
default rule can’t be used or has to be overwritten with an explicit \DeclareHookRule
for that specific hook.

Declaring default rules is only supported in the document preamble.3
The ⟨label⟩ can be specified using the dot-syntax to denote the current package

name. See section 2.1.5.

\DeclareDefaultHookRule

2.1.8 Querying hooks

Simpler data types, like token lists, have three possible states; they can:

• exist and be empty;

• exist and be non-empty; and

• not exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: a hook may exist or not, and independently it may or
may not be empty. This means that even a hook that doesn’t exist may be non-empty
and it can also be disabled.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

Given that code or rules can be added to a hook even if it doesn’t physically exist
yet, means that a querying its existence has no real use case (in contrast to other variables
that can only be update if they have already been declared). For that reason only the
test for emptiness has a public interface.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have
code added to its code pool. A hook is said to exist when it was declared with \NewHook
or some variant thereof. Generic hooks such as file and env hooks are automatically
declared when code is added to them.

3Trying to do so, e.g., via \DeclareHookRule with ?? has bad side-effects and is not supported (though
not explicitly caught for performance reasons).

12

\IfHookEmptyTF {⟨hook⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨hook⟩ is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext) or such code was removed again (via \RemoveFromHook), and branches
to either ⟨true code⟩ or ⟨false code⟩ depending on the result.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\IfHookEmptyTF ⋆
\IfHookEmptyT ⋆
\IfHookEmptyF ⋆

2.1.9 Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

\ShowHook {⟨hook⟩}
\LogHook {⟨hook⟩}

Displays information about the ⟨hook⟩ such as

• the code chunks (and their labels) added to it,

• any rules set up to order them,

• the computed order in which the chunks are executed,

• any code executed on the next invocation only.

\ShowHook
\LogHook

\LogHook prints the information to the .log file, and \ShowHook prints them to the
terminal/command window and starts TEX’s prompt (only in \errorstopmode) to wait
for user action.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

Suppose a hook example-hook whose output of \ShowHook{example-hook} is:

1 -> The hook ’example-hook’:
2 > Code chunks:
3 > foo -> [code from package ’foo’]
4 > bar -> [from package ’bar’]
5 > baz -> [package ’baz’ is here]
6 > Document-level (top-level) code (executed last):
7 > -> [code from ’top-level’]
8 > Extra code for next invocation:
9 > -> [one-time code]

10 > Rules:
11 > foo|baz with relation >
12 > baz|bar with default relation <
13 > Execution order (after applying rules):
14 > baz, foo, bar.

In the listing above, lines 3 to 5 show the three code chunks added to the hook and
their respective labels in the format

⟨label⟩ -> ⟨code⟩

13

Line 7 shows the code chunk added by the user in the main document (labeled
top-level) in the format

Document-level (top-level) code (executed ⟨first|last⟩):
-> ⟨top-level code⟩

This code will be either the first or last code executed by the hook (last if the hook is
normal, first if it is reversed). This chunk is not affected by rules and does not take
part in sorting.

Line 9 shows the code chunk for the next execution of the hook in the format

-> ⟨next-code⟩

This code will be used and disappear at the next \UseHook{example-hook}, in contrast
to the chunks mentioned earlier, which can only be removed from that hook by doing
\RemoveFromHook{⟨label⟩}[example-hook].

Lines 11 and 12 show the rules declared that affect this hook in the format

⟨label-1⟩|⟨label-2⟩ with ⟨default?⟩ relation ⟨relation⟩

which means that the ⟨relation⟩ applies to ⟨label-1⟩ and ⟨label-2⟩, in that order, as
detailed in \DeclareHookRule. If the relation is default it means that this rule applies
to ⟨label-1⟩ and ⟨label-2⟩ in all hooks, (unless overridden by a non-default relation).

Finally, line 14 lists the labels in the hook after sorting; that is, in the order they
will be executed when the hook is used.

2.1.10 Debugging hook code

\DebugHooksOn ... \DebugHooksOff

Turn the debugging of hook code on or off. This displays most changes made to the hook
data structures. The output is rather coarse and not really intended for normal use, but
it can be helpful in case hooks do not work as expected. See also 2.1.9 for commands to
inspect individual hooks.

\DebugHooksOn
\DebugHooksOff

2.2 L3 programming layer (expl3) interfaces
This is a quick summary of the LATEX3 programming interfaces for use with packages
written in expl3. In contrast to the LATEX 2ε interfaces they always use mandatory
arguments only, e.g., you always have to specify the ⟨label⟩ for a code chunk. We
therefore suggest to use the declarations discussed in the previous section even in expl3
packages, but the choice is yours.

\hook_new:n {⟨hook⟩}
\hook_new_reversed:n {⟨hook⟩}
\hook_new_pair:nn {⟨hook-1⟩} {⟨hook-2⟩}

Creates a new ⟨hook⟩ with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {⟨hook-2 ⟩} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

14

\hook_new_with_args:nn {⟨hook⟩} {⟨number⟩}
\hook_new_reversed_with_args:nn {⟨hook⟩} {⟨number⟩}
\hook_new_pair_with_args:nnn {⟨hook-1⟩} {⟨hook-2⟩} {⟨number⟩}

\hook_new_with_args:nn
\hook_new_reversed_with_args:nn
\hook_new_pair_with_args:nnn

Creates a new ⟨hook⟩ with normal or reverse ordering of code chunks, that takes ⟨number⟩
arguments from the input stream when it is used. \hook_new_pair_with_args:nn cre-
ates a pair of such hooks with {⟨hook-2 ⟩} being a reversed hook. If a hook name is
already taken, an error is raised and the hook is not created.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_disable_generic:n {⟨hook⟩}

Marks {⟨hook⟩} as disabled. Any further attempt to add code to it or declare it, will
result in an error and any call to \hook_use:n will simply do nothing.

This declaration is intended for use with generic hooks that are known not to work
(see ltcmdhooks-doc) if they receive code.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_disable_generic:n

\hook_activate_generic:n {⟨hook⟩}

This is like \hook_new:n but it does nothing if the hook was previously declared with
\hook_new:n. This declaration should be used only in special situations, e.g., when a
command from another package needs to be altered and it is not clear whether a generic
cmd hook (for that command) has been previously explicitly declared.

Normally \hook_new:n should be used instead of this.

\hook_activate_generic:n

\hook_use:n {⟨hook⟩}\hook_use:n

\hook_use:nnw {⟨hook⟩} {⟨number⟩} {⟨arg1⟩} ... {⟨argn⟩}

Executes the {⟨hook⟩} code followed (if set up) by the code for next invocation only, then
empties that next invocation code. \hook_use:nnw should be used for hooks declared
with arguments, and should be followed by as many brace groups as the declared number
of arguments. The ⟨number⟩ should be the number of arguments declared for the hook.
If the hook is not declared, this command does nothing and it will remove ⟨number⟩ items
from the input.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use:nnw

\hook_use_once:n {⟨hook⟩}\hook_use_once:n

\hook_use_once:nnw {⟨hook⟩} {⟨number⟩} {⟨arg1⟩} ... {⟨argn⟩}

Changes the {⟨hook⟩} status so that from now on any addition to the hook code is
executed immediately. Then execute any {⟨hook⟩} code already set up. \hook_use_-
once:nnw should be used for hooks declared with arguments, and should be followed by
as many brace groups as the declared number of arguments. The ⟨number⟩ should be the
number of arguments declared for the hook. If the hook is not declared, this command
does nothing and it will remove ⟨number⟩ items from the input.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use_once:nnw

\hook_gput_code:nnn {⟨hook⟩} {⟨label⟩} {⟨code⟩}\hook_gput_code:nnn

15

\hook_gput_code_with_args:nnn {⟨hook⟩} {⟨label⟩} {⟨code⟩}\hook_gput_code_with_args:nnn

Adds a chunk of ⟨code⟩ to the ⟨hook⟩ labeled ⟨label⟩. If the label already exists the
⟨code⟩ is appended to the already existing code.

If \hook_gput_code_with_args:nnn is used, the ⟨code⟩ can access the arguments
passed to \hook_use:nnw (or \hook_use_once:nnw) with #1, #2, . . . , #n (up to the
number of arguments declared for the hook). In that case, if an actual parameter token
should be added to the code, it should be doubled.

If code is added to an external ⟨hook⟩ (of the kernel or another package) then the
convention is to use the package name as the ⟨label⟩ not some internal module name or
some other arbitrary string.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\hook_gput_next_code:nn {⟨hook⟩} {⟨code⟩}\hook_gput_next_code:nn

\hook_gput_next_code_with_args:nn {⟨hook⟩} {⟨code⟩}\hook_gput_next_code_with_args:nn

Adds a chunk of ⟨code⟩ for use only in the next invocation of the ⟨hook⟩. Once used it
is gone.

If \hook_gput_next_code_with_args:nn is used, the ⟨code⟩ can access the argu-
ments passed to \hook_use:nnw (or \hook_use_once:nnw) with #1, #2, . . . , #n (up to
the number of arguments declared for the hook). In that case, if an actual parameter
token should be added to the code, it should be doubled.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed. Thus if one needs to undo what the standard does one has to do that as
part of ⟨code⟩.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_gclear_next_code:n {⟨hook⟩}

Undo any earlier \hook_gput_next_code:nn.
\hook_gclear_next_code:n

\hook_gremove_code:nn {⟨hook⟩} {⟨label⟩}

Removes any code for ⟨hook⟩ labeled ⟨label⟩.
If there is no code under the ⟨label⟩ in the ⟨hook⟩, or if the ⟨hook⟩ does not exist, a

warning is issued when you attempt to use \hook_gremove_code:nn, and the command
is ignored.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\hook_gremove_code:nn

\hook_gset_rule:nnnn {⟨hook⟩} {⟨label1⟩} {⟨relation⟩} {⟨label2⟩}

Relate ⟨label1⟩ with ⟨label2⟩ when used in ⟨hook⟩. See \DeclareHookRule for the
allowed ⟨relation⟩s. If ⟨hook⟩ is ?? a default rule is specified.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5. The dot-syntax is parsed in both ⟨label⟩ arguments,
but it usually makes sense to be used in only one of them.

\hook_gset_rule:nnnn

16

\hook_if_empty:nTF {⟨hook⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨hook⟩ is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either ⟨true code⟩ or ⟨false code⟩ depending on
the result.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_if_empty_p:n ⋆
\hook_if_empty:nTF ⋆

\hook_show:n {⟨hook⟩}
\hook_log:n {⟨hook⟩}

Displays information about the ⟨hook⟩ such as

• the code chunks (and their labels) added to it,

• any rules set up to order them,

• the computed order in which the chunks are executed,

• any code executed on the next invocation only.

\hook_log:n prints the information to the .log file, and \hook_show:n prints them
to the terminal/command window and starts TEX’s prompt (only if \errorstopmode) to
wait for user action.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_show:n
\hook_log:n

\hook_debug_on:

Turns the debugging of hook code on or off. This displays changes to the hook data.
\hook_debug_on:
\hook_debug_off:

2.3 On the order of hook code execution
Chunks of code for a ⟨hook⟩ under different labels are supposed to be independent if
there are no special rules set up that define a relation between the chunks. This means
that you can’t make assumptions about the order of execution!

Suppose you have the following declarations:

\NewHook{myhook}
\AddToHook{myhook}[packageA]{\typeout{A}}
\AddToHook{myhook}[packageB]{\typeout{B}}
\AddToHook{myhook}[packageC]{\typeout{C}}

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packageA, packageB, packageC
which you can verify with \ShowHook{myhook}:

-> The hook ’myhook’:
> Code chunks:
> packageA -> \typeout {A}
> packageB -> \typeout {B}
> packageC -> \typeout {C}
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:

17

> ---
> Rules:
> ---
> Execution order:
> packageA, packageB, packageC.

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

Suppose, for example, you want to replace the code chunk for packageA, e.g.,

\RemoveFromHook{myhook}[packageA]
\AddToHook{myhook}[packageA]{\typeout{A alt}}

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}

instead of the previous lines we get

-> The hook ’myhook’:
> Code chunks:
> packageA -> \typeout {A}
> packageB -> \typeout {B}
> packageC -> \typeout {C}
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:
> ---
> Rules:
> packageB|packageA with relation >
> Execution order (after applying rules):
> packageA, packageC, packageB.

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{packageC}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules

that partially or fully define the order (in which you can rely on them being fulfilled).

18

2.4 The use of “reversed” hooks
You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example4, suppose there is a package
adding the following:

\AddToHook{env/quote/before}[package-1]{\begin{itshape}}
\AddToHook{env/quote/after} [package-1]{\end{itshape}}

As a result, all quotes will be in italics. Now suppose further that another package-too
makes the quotes also in blue and therefore adds:

\usepackage{color}
\AddToHook{env/quote/before}[package-too]{\begin{color}{blue}}
\AddToHook{env/quote/after} [package-too]{\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, package-too

(or vice versa) and as a result, would get:
\begin{itshape}\begin{color}{blue} ...
\end{itshape}\end{color}

and an error message saying that \begin{color} was ended by \end{itshape}. With
env/quote/after declared as a reversed hook the execution order is reversed and so
all environments are closed in the correct sequence and \ShowHook would give us the
following output:

-> The hook ’env/quote/after’:
> Code chunks:
> package-1 -> \end {itshape}
> package-too -> \end {color}
> Document-level (top-level) code (executed first):
> ---
> Extra code for next invocation:
> ---
> Rules:
> ---
> Execution order (after reversal):
> package-too, package-1.

If there is a matching default rule (done with \DeclareDefaultHookRule or with ??
for the hook name) then this default rule is applied before the reversal so that the order
in the reversed hook mirrors the one in the normal hook. However, all rules specific to
a hook happen always after the reversal of the execution order, so if you alter the order
you will probably have to alter it in both hooks, not just in one, but that depends on the
use case.

4There are simpler ways to achieve the same effect.

19

2.5 Difference between “normal” and “one-time” hooks
When executing a hook a developer has the choice of using either \UseHook or
\UseOneTimeHook (or their expl3 equivalents \hook_use:n and \hook_use_once:n).
This choice affects how \AddToHook is handled after the hook has been executed for
the first time.

With normal hooks adding code via \AddToHook means that the code chunk is added
to the hook data structure and then used each time \UseHook is called.

With one-time hooks it this is handled slightly differently: After \UseOneTimeHook
has been called, any further attempts to add code to the hook via \AddToHook will simply
execute the ⟨code⟩ immediately.

This has some consequences one needs to be aware of:

• If ⟨code⟩ is added to a normal hook after the hook was executed and it is never
executed again for one or the other reason, then this new ⟨code⟩ will never be
executed.

• In contrast if that happens with a one-time hook the ⟨code⟩ is executed immedi-
ately.

In particular this means that construct such as

\AddToHook{myhook}
{ ⟨code-1⟩ \AddToHook{myhook}{⟨code-2 ⟩} ⟨code-3⟩ }

works for one-time hooks5 (all three code chunks are executed one after another), but
it makes little sense with a normal hook, because with a normal hook the first time
\UseHook{myhook} is executed it would

• execute ⟨code-1⟩,

• then execute \AddToHook{myhook}{code-2} which adds the code chunk ⟨code-2⟩
to the hook for use on the next invocation,

• and finally execute ⟨code-3⟩.

The second time \UseHook is called it would execute the above and in addition ⟨code-2⟩
as that was added as a code chunk to the hook in the meantime. So each time the
hook is used another copy of ⟨code-2⟩ is added and so that code chunk is executed
⟨# of invocations⟩ − 1 times.

2.6 Generic hooks provided by packages
The hook management system also implements a category of hooks that are called
“Generic Hooks”. Normally a hook has to be explicitly declared before it can be used
in code. This ensures that different packages are not using the same hook name for
unrelated purposes—something that would result in absolute chaos. However, there are
a number of “standard” hooks where it is unreasonable to declare them beforehand, e.g,
each and every command has (in theory) an associated before and after hook. In such
cases, i.e., for command, environment or file hooks, they can be used simply by adding
code to them with \AddToHook. For more specialized generic hooks, e.g., those provided

5This is sometimes used with \AtBeginDocument which is why it is supported.

20

by babel, you have to additionally enable them with \ActivateGenericHook as explained
below.

The generic hooks provided by LATEX are those for cmd, env, file, include, package,
and class, and all these are available out of the box: you only have to use \AddToHook
to add code to them, but you don’t have to add \UseHook or \UseOneTimeHook to your
code, because this is already done for you (or, in the case of cmd hooks, the command’s
code is patched at \begin{document}, if necessary).

However, if you want to provide further generic hooks in your own code, the situation
is slightly different. To do this you should use \UseHook or \UseOneTimeHook, but
without declaring the hook with \NewHook. As mentioned earlier, a call to \UseHook with
an undeclared hook name does nothing. So as an additional setup step, you need to
explicitly activate your generic hook. Note that a generic hook produced in this way is
always a normal hook.

For a truly generic hook, with a variable part in the hook name, such upfront acti-
vation would be difficult or impossible, because you typically do not know what kind of
variable parts may come up in real documents.

For example, babel provides hooks such as babel/⟨language⟩/afterextras. How-
ever, language support in babel is often done through external language packages. Thus
doing the activation for all languages inside the core babel code is not a viable approach.
Instead it needs to be done by each language package (or by the user who wants to use
a particular hook).

Because the hooks are not declared with \NewHook their names should be carefully
chosen to ensure that they are (likely to be) unique. Best practice is to include the
package or command name, as was done in the babel example above.

Generic hooks defined in this way are always normal hooks (i.e., you can’t imple-
ment reversed hooks this way). This is a deliberate limitation, because it speeds up the
processing considerably.

2.7 Hooks with arguments
Sometimes it is necessary to pass contextual information to a hook, and, for one reason
or another, it is not feasible to store such information in macros. To serve this purpose,
hooks can be declared with arguments, so that the programmer can pass along the data
necessary for the code in the hook to function properly.

A hook with arguments works mostly like a regular hook, and most commands that
work for regular hooks, also work for hooks that take arguments. The differences are
when the hook is declared (\NewHookWithArguments is used instead of \NewHook), then
code can be added with both \AddToHook and \AddToHookWithArguments, and when
the hook is used (\UseHookWithArguments instead of \UseHook).

A hook with arguments must be declared as such (before it is first used, as all regular
hooks) using \NewHookWithArguments{⟨hook⟩}{⟨number⟩}. All code added to that hook
can then use #1 to access the first argument, #2 to access the second, and so forth up
to the number of arguments declared. However, it is still possible to add code with
references to the arguments of a hook that was not yet declared (we will discuss that
later). At their core, hooks are macros, so TEX’s limit of 9 arguments applies, and a
low-level TEX error is raised if you try to reference an argument number that doesn’t
exist.

21

To use a hook with arguments, just write \UseHookWithArguments{⟨hook⟩}{⟨number⟩}
followed by a braced list of the arguments. For example, if the hook test takes three
arguments, write:

\UseHookWithArguments{test}{3}{arg-1}{arg-2}{arg-3}

then, in the ⟨code⟩ of the hook, all instances of #1 will be replaced by arg-1, #2 by
arg-2 and so on. If, at the point of usage, the programmer provides more arguments
than the hook is declared to take, the excess arguments are simply ignored by the hook.
Behavior is unpredictable6 if too few arguments are provided. If the hook isn’t declared,
⟨number⟩ arguments are removed from the input stream.

Adding code to a hook with arguments can be done with \AddToHookWithArguments
as well as with the regular \AddToHook, to achieve different outcomes. The main differ-
ence when it comes to adding code to a hook, in this case, is firstly the possibility of
accessing a hook’s arguments, of course, and second, how parameter tokens (#6) are
treated.

Using \AddToHook in a hook that takes arguments will work as it does for all other
hooks. This allows a package developer to add arguments to a hook that otherwise had
none without having to worry about compatibility. This means that, for example:

\AddToHook{test}{\def\foo#1{Hello, #1!}}

will define the same macro \foo regardless if the hook test takes arguments or not.
Using \AddToHookWithArguments allows the ⟨code⟩ added to access the arguments

of the hook with #1, #2, and so forth, up to the number of the arguments declared in the
hook. This means that if one wants to add a #6 to the ⟨code⟩ that token must be doubled
in the input. The same definition from above, using \AddToHookWithArguments, needs
to be rewritten:

\AddToHookWithArguments{test}{\def\foo##1{Hello, ##1!}}

Extending the above example to use the hook arguments, we could rewrite something
like (now from declaration to usage, to get the whole picture):

\NewHookWithArguments{test}{1}
\AddToHookWithArguments{test}{%

\typeout{Defining foo with "#1"}
\def\foo##1{Hello, ##1! Some text after: #1}%

}
\UseHook{test}{Howdy!}
\ShowCommand\foo

Running the code above prints in the terminal:

Defining foo with "Howdy!"
> \foo=macro:
#1->Hello, #1! Some text after: Howdy!.

6The hook will take the declared number of arguments, and what will happen depends on what was
grabbed, and what the hook code does with its arguments.

22

Note how ##1 in the call to \AddToHookWithArguments became #1, and the #1 was
replaced by the argument passed to the hook. Should the hook be used again, with a
different argument, the definition would naturally change.

It is possible to add code referencing a hook’s arguments before such hook is declared
and the number of hooks is fixed. However, if some code is added to the hook, that
references more arguments than will be declared for the hook, there will be a low-level
TEX error about an “Illegal parameter number” at the time the hook is declared, which
will be hard to track down because at that point TEX can’t know whence the offending
code came from. Thus it is important that package writers explicitly document how
many arguments (if any) each hook can take, so users of those packages know how many
arguments can be referenced, and equally important, what each argument means.

2.8 Private LATEX kernel hooks
There are a few places where it is absolutely essential for LATEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document
unnecessary slow, because there has to be sorting even though the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break LATEX).

For that reason such code is not using the hook management, but instead private ker-
nel commands directly before or after a public hook with the following naming convention:
\@kernel@before@⟨hook⟩ or \@kernel@after@⟨hook⟩. For example, in \enddocument
you find

\UseHook{enddocument}%
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.7

2.9 Legacy LATEX 2ε interfaces
LATEX 2ε offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management, several additional hooks have been added to LATEX
and more will follow. See the next section for what is already available.

7As with everything in TEX there is not enforcement of this rule, and by looking at the code it is
easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

23

\AtBeginDocument [⟨label⟩] {⟨code⟩}

If used without the optional argument ⟨label⟩, it works essentially like before, i.e., it is
adding ⟨code⟩ to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level (see section 2.1.6)
if done outside of a package or class or with the package/class name if called inside such
a file (see section 2.1.5).

This way one can add code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after another package’s code. When using the optional argument the call
is equivalent to running \AddToHook {begindocument} [⟨label⟩] {⟨code⟩}.

\AtBeginDocument is a wrapper around the begindocument hook (see section 3.2),
which is a one-time hook. As such, after the begindocument hook is executed at
\begin{document} any attempt to add ⟨code⟩ to this hook with \AtBeginDocument or
with \AddToHook will cause that ⟨code⟩ to execute immediately instead. See section 2.5
for more on one-time hooks.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtBeginDocument

\AtEndDocument [⟨label⟩] {⟨code⟩}

Like \AtBeginDocument but for the enddocument hook.
\AtEndDocument

The few hooks that existed previously in LATEX 2ε used internally commands such
as \@begindocumenthook and packages sometimes augmented them directly rather than
working through \AtBeginDocument. For that reason there is currently support for this,
that is, if the system detects that such an internal legacy hook command contains code
it adds it to the new hook system under the label legacy so that it doesn’t get lost.

However, over time the remaining cases of direct usage need updating because in one
of the future release of LATEX we will turn this legacy support off, as it does unnecessary
slow down the processing.

3 LATEX 2ε commands and environments augmented
by hooks

In this section we describe the standard hooks that are now offered by LATEX, or give
pointers to other documents in which they are described. This section will grow over
time (and perhaps eventually move to usrguide3).

3.1 Generic hooks
As stated earlier, with the exception of generic hooks, all hooks must be declared
with \NewHook before they can be used. All generic hooks have names of the form
“⟨type⟩/⟨name⟩/⟨position⟩”, where ⟨type⟩ is from the predefined list shown below,
and ⟨name⟩ is the variable part whose meaning will depend on the ⟨type⟩. The last com-
ponent, ⟨position⟩, has more complex possibilities: it can always be before or after;
for env hooks, it can also be begin or end; and for include hooks it can also be end. Each
specific hook is documented below, or in ltcmdhooks-doc.pdf or ltfilehook-doc.pdf.

The generic hooks provided by LATEX belong to one of the six types:

24

env Hooks executed before and after environments – ⟨name⟩ is the name of the environ-
ment, and available values for ⟨position⟩ are before, begin, end, and after;

cmd Hooks added to and executed before and after commands – ⟨name⟩ is the name of
the command, and available values for ⟨position⟩ are before and after;

file Hooks executed before and after reading a file – ⟨name⟩ is the name of the file (with
extension), and available values for ⟨position⟩ are before and after;

package Hooks executed before and after loading packages – ⟨name⟩ is the name of the
package, and available values for ⟨position⟩ are before and after;

class Hooks executed before and after loading classes – ⟨name⟩ is the name of the class,
and available values for ⟨position⟩ are before and after;

include Hooks executed before and after \included files – ⟨name⟩ is the name of the
included file (without the .tex extension), and available values for ⟨position⟩ are
before, end, and after.

Each of the hooks above are detailed in the following sections and in linked docu-
mentation.

3.1.1 Generic hooks for all environments

Every environment ⟨env⟩ has now four associated hooks coming with it:

env/⟨env⟩/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/⟨env⟩/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the third argument of \NewDocumentEnvironment
and the second argument of \newenvironment). Its scope is the environment body.

env/⟨env⟩/end This hook is executed as part of \end directly in front of the code specific
to the end of the environment (e.g., the forth argument of \NewDocumentEnvironment
and the third argument of \newenvironment).

env/⟨env⟩/after This hook is executed as part of \end after the code specific to the
environment end and after the environment group has ended. Its scope is therefore
not restricted by the environment.
The hook is implemented as a reversed hook so if two packages add code to
env/⟨env⟩/before and to env/⟨env⟩/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

Given that these generic hook names involve / as part of their name they would not
work if one tries to define an environment using a name that involves a /.8

Generic environment hooks are never one-time hooks even with environments that
are supposed to appear only once in a document.9 In contrast to other hooks there is
also no need to declare them using \NewHook.

8Officially, LATEX names for environments should only consist of a sequence of letters, numbers, and
the character *, i.e., this is not a new restriction.

9Thus if one adds code to such hooks after the environment has been processed, it will only be
executed if the environment appears again and if that doesn’t happen the code will never get executed.

25

The hooks are only executed if \begin{⟨env⟩} and \end{⟨env⟩} is used. If the
environment code is executed via low-level calls to \⟨env⟩ and \end⟨env⟩ (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like

\UseHook{env/quote/before}\quote
...

\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.
Largely for compatibility with existing packages, the following four commands are

also available to set the environment hooks; but for new packages we recommend directly
using the hook names and \AddToHook.

\BeforeBeginEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This declaration adds to the env/⟨env⟩/before hook using the ⟨label⟩. If ⟨label⟩ is
not given, the ⟨default label⟩ is used (see section 2.1.5).

\BeforeBeginEnvironment

\AtBeginEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This is like \BeforeBeginEnvironment but it adds to the env/⟨env⟩/begin hook.
\AtBeginEnvironment

\AtEndEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This is like \BeforeBeginEnvironment but it adds to the env/⟨env⟩/end hook.
\AtEndEnvironment

\AfterEndEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This is like \BeforeBeginEnvironment but it adds to the env/⟨env⟩/after hook.
\AfterEndEnvironment

3.1.2 Generic hooks for commands

Similar to environments there are now (at least in theory) two generic hooks available
for any LATEX command. These are

cmd/⟨name⟩/before This hook is executed at the very start of the command execution.

cmd/⟨name⟩/after This hook is executed at the very end of the command body. It is
implemented as a reversed hook.

In practice there are restrictions and especially the after hook works only with a subset
of commands. Details about these restrictions are documented in ltcmdhooks-doc.pdf
or with code in ltcmdhooks-code.pdf.

3.1.3 Generic hooks provided by file loading operations

There are several hooks added to LATEX’s process of loading file via its high-level interfaces
such as \input, \include, \usepackage, \RequirePackage, etc. These are documented
in ltfilehook-doc.pdf or with code in ltfilehook-code.pdf.

26

3.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one could add to using
\AtBeginDocument. Experiences over the years have shown that this single hook in one
place was not enough and as part of adding the general hook management system a
number of additional hooks have been added at this point. The places for these hooks
have been chosen to provide the same support as offered by external packages, such as
etoolbox and others that augmented \document to gain better control.

Supported are now the following hooks (all of them one-time hooks):

begindocument/before This hook is executed at the very start of \document, one can
think of it as a hook for code at the end of the preamble section and this is how it
is used by etoolbox’s \AtEndPreamble.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument This hook is added to by using \AddToHook{begindocument} or by using
\AtBeginDocument and it is executed after the .aux file has been read and most
initialization are done, so they can be altered and inspected by the hook code. It is
followed by a small number of further initializations that shouldn’t be altered and
are therefore coming later.
The hook should not be used to add material for typesetting as we are still in
LATEX’s initialization phase and not in the document body. If such material needs
to be added to the document body use the next hook instead.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

The generic hooks executed by \begin also exist, i.e., env/document/before and
env/document/begin, but with this special environment it is better use the dedicated
one-time hooks above.

3.3 Hooks provided by \end{document}

LATEX 2ε has always provided \AtEndDocument to add code to the \end{document}, just
in front of the code that is normally executed there. While this was a big improvement
over the situation in LATEX 2.09, it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of
additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks (all of them one-time hooks):

27

enddocument The hook associated with \AtEndDocument. It is immediately called at the
beginning of \enddocument.
When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data, but since there will be no more pages you
need to write to it using \immediate\write). It is also the correct place to set up
any testing code to be run when the .aux file is re-read in the next step.
After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
etc.).
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \listfiles.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.
This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \listfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.
This is a one-time hook, so after it is executed, all further attempts to add code
to it will execute such code immediately (see section 2.5).is it even possible to add
code after this one?

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,

28

LATEX needs to be run several times, so initially it might get executed on the wrong page.
See section 3.4 for where to find the details.

It is in also possible to use the generic env/document/end hook which is executed
by \end, i.e., just in front of the first hook above. Note however that the other generic
\end environment hook, i.e., env/document/after will never get executed, because by
that time LATEX has finished the document processing.

3.4 Hooks provided by \shipout operations
There are several hooks and mechanisms added to LATEX’s process of generating pages.
These are documented in ltshipout-doc.pdf or with code in ltshipout-code.pdf.

3.5 Hooks provided for paragraphs
The paragraph processing has been augmented to include a number of internal and public
hooks. These are documented in ltpara-doc.pdf or with code in ltpara-code.pdf.

3.6 Hooks provided in NFSS commands
In languages that need to support for more than one script in parallel (and thus several
sets of fonts, e.g., supporting both Latin and Japanese fonts), NFSS font commands such
as \sffamily need to switch both the Latin family to “Sans Serif” and in addition alter
a second set of fonts.

To support this, several NFSS commands have hooks to which such support can be
added.

rmfamily After \rmfamily has done its initial checks and prepared a font series update,
this hook is executed before \selectfont.

sffamily This is like the rmfamily hook, but for the \sffamily command.

ttfamily This is like the rmfamily hook, but for the \ttfamily command.

normalfont The \normalfont command resets the font encoding, family, series and
shape to their document defaults. It then executes this hook and finally calls
\selectfont.

expand@font@defaults The internal \expand@font@defaults command expands and
saves the current defaults for the metafamilies (rm/sf/tt) and the metaseries
(bf/md). If the NFSS machinery has been augmented, e.g., for Chinese or Japanese
fonts, then further defaults may need to be set at this point. This can be done in
this hook which is executed at the end of this macro.

bfseries/defaults, bfseries If the \bfdefault was explicitly changed by the user, its
new value is used to set the bf series defaults for the metafamilies (rm/sf/tt) when
\bfseries is called. The bfseries/defaults hook allows further adjustments to
be made in this case. This hook is only executed if such a change is detected. In
contrast, the bfseries hook is always executed just before \selectfont is called
to change to the new series.

mdseries/defaults, mdseries These two hooks are like the previous ones but they are
in the \mdseries command.

29

selectfont This hook is executed inside \selectfont, after the current values for en-
coding, family, series, shape, and size are evaluated and the new font is selected
(and if necessary loaded). After the hook has executed, NFSS will still do any
updates necessary for a new size (such as changing the size of \strut) and any
updates necessary to a change in encoding.
This hook is intended for use cases where, in parallel to a change in the main font,
some other fonts need to be altered (e.g., in CJK processing where you may need
to deal with several different alphabets).

3.7 Hook provided by the mark mechanism
See ltmarks-doc.pdf for details.

insertmark This hook allows for a special setup while \InsertMark inserts a mark. It
is executed in group so local changes only apply to the mark being inserted.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\⟨addto-cmd⟩ . 4

A
\ActivateGenericHook 3
\AddToHook . 13
\AddToHookNext 17
\AddToHookNextWithArguments 7
\AddToHookWithArguments 6
\AfterEndEnvironment 26
\AtBeginDocument 27
\AtBeginEnvironment 26
\AtEndDocument 24
\AtEndEnvironment 26
\AtEndPreamble 27

B
\BeforeBeginEnvironment 26
\begin . 25
\bfdefault . 29
\bfseries . 29

C
\ClearHookNext 7
\ClearHookRule 11
\clearpage . 28
\csname . 8

D
\DebugHooksOff 14

\DebugHooksOn 14
\DeclareDefaultHookRule 12
\DeclareHookRule 6
\DisableGenericHook 3
\DisableHook . 3
\DiscardShipoutBox 7
\document . 27
\documentclass 8

E
\end . 29
\endcsname . 8
\enddocument . 27
\errorstopmode 13

H
hook commands:

\hook_activate_generic:n 15
\hook_debug_off: 17
\hook_debug_on: 17
\hook_disable_generic:n 15
\hook_gclear_next_code:n 16
\hook_gput_code:nnn 15
\hook_gput_code_with_args:nnn . . . 16
\hook_gput_next_code:nn 16
\hook_gput_next_code_with_-

args:nn 16
\hook_gremove_code:nn 16
\hook_gset_rule:nnnn 16

30

\hook_if_empty:nTF 8
\hook_if_empty_p:n 17
\hook_log:n 17
\hook_new:n 15
\hook_new_pair:nn 14
\hook_new_pair_with_args:nn 15
\hook_new_pair_with_args:nnn . . . 15
\hook_new_reversed:n 14
\hook_new_reversed_with_args:nn . 15
\hook_new_with_args:nn 15
\hook_show:n 17
\hook_use:n 15
\hook_use:nnw 16
\hook_use_once:n 15
\hook_use_once:nnw 15

I
\IfHookEmptyF 13
\IfHookEmptyT 13
\IfHookEmptyTF 8
\ignorespaces 27
\immediate . 28
\include . 26
\input . 26
\InsertMark . 30

L
\listfiles . 28
\LogHook . 13

M
\mdseries . 29

N
\NewDocumentEnvironment 25
\newenvironment 25
\NewHook . 2
\NewHookWithArguments 3
\NewMirroredHookPair 3
\NewMirroredHookPairWithArguments . . . 3
\NewReversedHook 3
\NewReversedHookWithArguments 3

\normalfont . 29
\normalsize . 7

P
\PopDefaultHookLabel 9
\PushDefaultHookLabel 9

R
\RemoveFromHook 13
\RequirePackage 9
\rmfamily . 29

S
\selectfont . 29
\SetDefaultHookLabel 10
\sffamily . 29
\shipout . 29
\ShowHook . 13
\small . 7
\special . 28
\strut . 30

T
TEX and LATEX 2ε commands:

\@begindocumenthook 24
\@firstofone 4
\@kernel@after@⟨hook⟩ 23
\@kernel@before@⟨hook⟩ 23
\@@end . 28
\expand@font@defaults 29

\ttfamily . 29

U
\UseHook . 8
\UseHookWithArguments 4
\UseOneTimeHook 4
\UseOneTimeHookWithArguments 5
\usepackage . 8
\usetikzlibrary 9

W
\write . 28

31

	Contents
	1 Introduction
	2 Package writer interface
	2.1 LaTeX2ε interfaces
	2.1.1 Declaring hooks
	2.1.2 Special declarations for generic hooks
	2.1.3 Using hooks in code
	2.1.4 Updating code for hooks
	2.1.5 Hook names and default labels
	2.1.6 The top-level label
	2.1.7 Defining relations between hook code
	2.1.8 Querying hooks
	2.1.9 Displaying hook code
	2.1.10 Debugging hook code

	2.2 L3 programming layer (expl3) interfaces
	2.3 On the order of hook code execution
	2.4 The use of "reversed" hooks
	2.5 Difference between "normal" and "one-time" hooks
	2.6 Generic hooks provided by packages
	2.7 Hooks with arguments
	2.8 Private LaTeX kernel hooks
	2.9 Legacy LaTeX2ε interfaces

	3 LaTeX2ε commands and environments augmented by hooks
	3.1 Generic hooks
	3.1.1 Generic hooks for all environments
	3.1.2 Generic hooks for commands
	3.1.3 Generic hooks provided by file loading operations

	3.2 Hooks provided by \begin{document}
	3.3 Hooks provided by \end{document}
	3.4 Hooks provided by \shipout operations
	3.5 Hooks provided for paragraphs
	3.6 Hooks provided in NFSS commands
	3.7 Hook provided by the mark mechanism

	Index
	Symbols
	A
	B
	C
	D
	E
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	W

