The 1tfilehook documentation®

Frank Mittelbach, Phelype Oleinik, KXTEX Project Team
October 22, 2025

Contents

1 Introduction 1
1.1 Provided hooks L 1
1.2 General hooks for file reading 0oL 1
1.3 Hooks for package and class files L. 3
1.4 Hooks for \include files 4
1.5 High-level interfaces for XTEX 5
1.6 Kernel, class, and package interfaces for WTEX 5
1.7 A sample package for structuring the log output 5

Index 7

1 Introduction

1.1 Provided hooks

The code offers a number of hooks into which packages (or the user) can add code to
support different use cases. Many hooks are offered as pairs (i.e., the second hook is
reversed. Also important to know is that these pairs are properly nested with respect to
other pairs of hooks.

There are hooks that are executed for all files of a certain type (if they contain code),
e.g., for all “include files” or all “packages”, and there are also hooks that are specific to
a single file, e.g., do something after the package foo.sty has been loaded.

1.2 General hooks for file reading

There are four hooks that are called for each file that is read using document-level com-
mands such as \input, \include, \usepackage, etc. They are not called for files read
using internal low-level methods, such as \@input or \openin.

*This code has version v1.0o dated 2025/06/20, © WTEX Project.

file/before These are:
file/.../before
file/.../after file/before, file/(file-name)/before These hooks are executed in that order just

file/after before the file is loaded for reading. The code of the first hook is used with every file,
while the second is executed only for the file with matching (file-name) allowing
you to specify code that only applies to one file.

file/(file-name)/after, file/after These hooks are executed after the file with
name (file-name) has been fully consumed. The order is swapped (the specific
one comes first) so that the /before and /after hooks nest properly, which is im-
portant if any of them involve grouping (e.g., contain environments, for example).
Furthermore both hooks are reversed hooks to support correct nesting of different
packages adding code to both /before and /after hooks.

So the overall sequence of hook processing for any file read through the user interface
commands of BTEX is:

\UseHook{file/before}
\UseHook{file/(file name)/before}
(file contents)
\UseHook{file/(file name)/after}
\UseHook{file/after}

The file hooks only refer to the file by its name and extension, so the (file name)
should be the file name as it is on the filesystem with extension (if any) and without paths.
Different from \input and similar commands, the .tex extension is not assumed in hook
(file name), so .tex files must be specified with their extension to be recognized. Files
within subfolders should also be addressed by their name and extension only.

Extensionless files also work, and should then be given without extension. Note
however that TEX prioritizes .tex files, so if two files foo and foo.tex exist in the
search path, only the latter will be seen.

When a file is input, the (file name) is available in \CurrentFile, which is then
used when accessing the file/(file name)/before and file/(file name)/after.

\CurrentFile The name of the file about to be read (or just finished) is available to the hooks through
\CurrentFile (there is no expl3 name for it for now). The file is always provided with
its extension, i.e., how it appears on your hard drive, but without any specified path
to it. For example, \input{sample} and \input{app/sample.tex} would both have
\CurrentFile being sample.tex.

\CurrentFilePath The path to the current file (complement to \CurrentFile) is available in \CurrentFilePath
if needed. The paths returned in \CurrentFilePath are only user paths, given through
\input@path (or expl3’s equivalent \1_file_search_path_seq) or by directly typing in
the path in the \input command or equivalent. Files located by kpsewhich get the path
added internally by the TEX implementation, so at the macro level it looks as if the file
were in the current folder, so the path in \CurrentFilePath is empty in these cases
(package and class files, mostly).

\CurrentFileUsed
\CurrentFilePathUsed

package/before
package/after
package/.../before
package/.../after
class/before
class/after
class/.../before
class/.../after

In normal circumstances these are identical to \CurrentFile and \CurrentFilePath.
They will differ when a file substitution has occurred for \CurrentFile. In that case,
\CurrentFileUsed and \CurrentFilePathUsed will hold the actual file name and path
loaded by ETEX, while \CurrentFile and \CurrentFilePath will hold the names that
were asked for. Unless doing very specific work on the file being read, \CurrentFile and
\CurrentFilePath should be enough.

1.3 Hooks for package and class files

Commands to load package and class files (e.g., \usepackage, \RequirePackage,
\LoadPackageWithOptions, etc.) offer the hooks from section 1.2 when they are used to
load a package or class file, e.g., file/array.sty/after would be called after the array
package got loaded. But as packages and classes form as special group of files, there are
some additional hooks available that only apply when a package or class is loaded.

These are:
package/before, package/after These hooks are called for each package being loaded.

package/(name)/before, package/(name)/after These hooks are additionally called if
the package name is (name) (without extension).

class/before, class/after These hooks are called for each class being loaded.

class/(name)/before, class/(name)/after These hooks are additionally called if the
class name is (name) (without extension).

All /after hooks are implemented as reversed hooks.

The overall sequence of execution for \usepackage and friends is:

\UseHook{package/before}
\UseOneTimeHook{package/(package name)/before}

\UseHook{file/before}
\UseHook{file/(package name).sty/before}
(package contents)
\UseHook{file/(package name).sty/after}
\UseHook{file/after}

code from \AtEnd0fPackage if used inside the package

\UseOneTimeHook{package/(package name)/after}
\UseHook{package/after}

and similar for class file loading, except that package/ is replaced by class/ and
\AtEnd0fPackage by \AtEnd0fClass.

If a package or class is not loaded none of the hooks are executed!

All class or package hooks involving the name of the class or package are implemented
as one-time hooks, whereas all other such hooks are normal hooks. This allows for the
following use case

include/before
include/.../before
include/end
include/.../end
include/after
include/.../after

\AddToHook{package/varioref/after}
{ ... apply my customizations if the package gets
loaded (or was loaded already) ... }

without the need to first test if the package is already loaded.

1.4 Hooks for \include files

To manage \include files, I TEX issues a \clearpage before and after loading such a
file. Depending on the use case one may want to execute code before or after these
\clearpages especially for the one that is issued at the end.

Executing code before the final \clearpage, means that the code is processed while
the last page of the included material is still under construction. Executing code after
it means that all floats from inside the include file are placed (which might have added
further pages) and the final page has finished.

Because of these different scenarios we offer hooks in three places.! None of the hooks
are executed when an \include file is bypassed because of an \includeonly declaration.
They are, however, all executed if ITEX makes an attempt to load the \include file
(even if it doesn’t exist and all that happens is “No file (filename).tex”).

These are:

include/before, include/(name)/before These hooks are executed (in that order) af-
ter the initial \clearpage and after .aux file is changed to use (name).aux, but
before the (name).tex file is loaded. In other words they are executed at the very
beginning of the first page of the \include file.

include/(name)/end, include/end These hooks are executed (in that order) after
TEX has stopped reading from the \include file, but before it has issued a
\clearpage to output any deferred floats.

include/(name)/after, include/after These hooks are executed (in that order) after
ETEX has issued the \clearpage but before is has switched back writing to the
main .aux file. Thus technically we are still inside the \include and if the hooks
generate any further typeset material including anything that writes to the .aux
file, then it would be considered part of the included material and bypassed if it is
not loaded because of some \includeonly statement.’

include/excluded, include/(name)/excluded The above hooks for \include files are
only executed when the file is loaded (or more exactly the load is attempted).
If, however, the \include file is explicitly excluded (through an \includeonly
statement) the above hooks are bypassed and instead the include/excluded hook
followed by the include/(name)/excluded hook are executed. This happens after
KTEX has loaded the .aux file for this include file, i.e., after WTEX has updated its
counters to pretend that the file was seen.

If you want to execute code before the first \clearpage there is no need to use a hook—you can
write it directly in front of the \include.

2For that reason another \clearpage is executed after these hooks which normally does nothing, but
starts a new page if further material got added this way.

All include hooks involving the name of the included file are implemented as one-
time hooks (whereas all other such hooks are normal hooks).

If you want to execute code that is run for every \include regardless of whether or
not it is excluded, use the cmd/include/before or cmd/include/after hooks.

1.5 High-level interfaces for BTEX

We do not provide any additional wrappers around the hooks (like filehook or scrlifile
do) because we believe that for package writers the high-level commands from the hook
management, e.g., \AddToHook, etc. are sufficient and in fact easier to work with, given
that the hooks have consistent naming conventions.

1.6 Kernel, class, and package interfaces for EKTEX

\declare@file@substitution

\declare@file@substitution {(file)} {(replacement-file)}

\undeclare@file@substitution \undeclare@file@substitution {(file)}

\disable@package@load
\reenable@package@load

If (file) is requested for loading replace it with (replacement-file). \CurrentFile
remains pointing to (file) but \CurrentFileUsed will show the file actually loaded.

The main use case for this declaration is to provide a corrected version of a package
that can’t be changed (due to its license) but no longer functions because of BTEX kernel
changes, for example, or to provide a version that makes use of new kernel functionality
while the original package remains available for use with older releases. As such it is
mainly meant for use in the IMTEX kernel but other use cases are conceivable.

The \undeclare@file@substitution declaration undoes a substitution made ear-
lier.

Please do not misuse this functionality and replace a file with another un-
less if really needed and only if the new version is implementing the same
functionality as the original one!

\disable@package@load {(package)} {(alternate-code)}
\reenable@package@load {(package)}

If (package) is requested, do not load it but instead run (alternate-code) which could
issue a warning, error or any other code.

The main use case is for classes that want to restrict the set of supported packages
or contain code that make the use of some packages impossible. So rather than waiting
until the document breaks they can set up informative messages why certain packages
are not available.

The function is only implemented for packages not for arbitrary files and again it
should only be applied if there are good reasons for doing this.?

1.7 A sample package for structuring the log output

As an application we provide the package structuredlog that adds lines to the .log when
a file is opened and closed for reading keeping track of nesting level es well. For example,
for the current document it adds the lines

3Just to be sure: “I don’t like this package by somebody else” is not a good one :-)

= (LEVEL 1 START) tilmr.fd

= (LEVEL 1 STOP) tllmr.fd

= (LEVEL 1 START) supp-pdf.mkii

= (LEVEL 1 STOP) supp-pdf.mkii

= (LEVEL 1 START) nameref.sty

== (LEVEL 2 START) refcount.sty
(LEVEL 2 STOP) refcount.sty

(LEVEL 2 START) gettitlestring.sty
(LEVEL 2 STOP) gettitlestring.sty

= (LEVEL 1 STOP) nameref.sty

= (LEVEL 1 START) 1ltfilehook-doc.out
= (LEVEL 1 STOP) 1ltfilehook-doc.out

= (LEVEL 1 START) 1ltfilehook-doc.out
= (LEVEL 1 STOP) 1ltfilehook-doc.out

= (LEVEL 1 START) ltfilehook-doc.hd
= (LEVEL 1 STOP) 1ltfilehook-doc.hd

1

= (LEVEL 1 START) ltfilehook.dtx

== (LEVEL 2 START) otillmr.fd
== (LEVEL 2 STOP) otllmr.fd
== (LEVEL 2 START) omllmm.fd
== (LEVEL 2 STOP) omllmm.fd
== (LEVEL 2 START) omslmsy.fd
== (LEVEL 2 STOP) omslmsy.fd
== (LEVEL 2 START) omxlmex.fd
== (LEVEL 2 STOP) omxlmex.fd
== (LEVEL 2 START) umsa.fd

== (LEVEL 2 STOP) umsa.fd

== (LEVEL 2 START) umsb.fd

== (LEVEL 2 STOP) umsb.fd

== (LEVEL 2 START) tsilmr.fd
== (LEVEL 2 STOP) tsillmr.fd
== (LEVEL 2 START) tillmss.fd
== (LEVEL 2 STOP) tllmss.fd

= (LEVEL 1 STOP) 1ltfilehook.dtx

Thus if you inspect an issue in the .log it is easy to figure out in which file it occurred,
simply by searching back for LEVEL and if it is a STOP then remove 1 from the level value
and search further for LEVEL with that value which should then be the START level of the
file you are in.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

\AddToHook
\AtEndOfClass
\AtEndOfPackage

class/.../after
class/.../before

class/after
class/before
\clearpage
\CurrentFile
\CurrentFilePath
\CurrentFilePathUsed
\CurrentFileUsed

file commands:
\1_file_search_path_seq
file/.../after
file/.../before
file/after
file/before

\include
include/.../after
include/.../before
include/.../end
include/after
include/before

include/end
\includeonly
\input
L
\LoadPackageWithOptions
(0]
\openin
P
package/.../after
package/.../before
package/after
package/before
R
\RequirePackage
T
TEX and ETEX 2 commands:
\@input
\declare@file@substitution
\disable@package@load
\input@path
\reenable@package@load
\undeclare@file@substitution
U
\UseHook,
\UseOneTimeHook

3

3

	Contents
	1 Introduction
	1.1 Provided hooks
	1.2 General hooks for file reading
	1.3 Hooks for package and class files
	1.4 Hooks for \include files
	1.5 High-level interfaces for LaTeX
	1.6 Kernel, class, and package interfaces for LaTeX
	1.7 A sample package for structuring the log output

	Index
	A
	C
	F
	I
	L
	O
	P
	R
	T
	U

